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Figure 1a,b. Figure caption on page 4.



the primary and secondary class had been identi®ed as agriculture and he ral class for that gridbox was

allocated by reference to plant functional types and leaf area index simulate tion model (Woodward et al.,

1995) driven by the observed present-day climate. In gridboxes where bot ere already ``natural'' in ACT,

these were left unchanged for NAT. The resulting dataset of potential veget ative agreement with another

such dataset derived independently by Haxeltine and Prentice (1996).

Clearly, land-cover types covering less than 25% of a 18 gridbox will not so where less than 25% of the

landscape is used by humans, this will not be resolved in these simulation sets exist which would allow

such areas of land use to be represented, use of such a dataset in this stud n pre-human vegetation at a

comparable resolution if the effects of the ®ne detail were to be meaningf asets will be crucial for time-

dependent simulations of the climatic effects of land use change over recen y such as that presented here,

the coarse-resolution datasets should provide a useful ®rst-order indicati in the global climate.

Figure 1. Vegetation datasets and extent of differences between them. (a) Summa sists of 53 land cover classes; for

clarity, these are grouped here according to the dominant plant function sses in ACT dataset. Agriculture

covering less than 25% of a 18 gridbox is not resolved. (c) Summary as described in (a).
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3. CLIMATE SIMULATIONS

adAM3 simulates the atmospheric circulation on a global grid of 3.758 longitude by 2.58 latitude with 19 le

993). It includes parametrization schemes for the sub-gridscale processes of radiative transfer (Edwards and S

990) (distinguishing convective and layer cloud), precipitation (Gregory and Mitchell, 1995) (distinguishing

ayer turbulence (Smith, 1990), gravity wave drag (Gregory et al., 1998) and surface hydrology (Cox et al., 19

0 minutes, but for computational ef®ciency the radiation calculations are performed every sixth timestep wit

djusted for the solar zenith angle on other timesteps.

Simulation of the surface shortwave radiation budget includes a spatially-explicit surface albedo calculation

egetation and soil types and the depth and temperature of any lying snow (Hansen et al., 1983). Of particu

nclusion of the effect of vegetation on surface albedo in snowy conditions (Thomas and Rowntree, 1992). Each

separate albedo parameter for snow-free and deep-snow conditions (Cox et al., 1999), and the latter prov

odelled surface albedo which increases with snow depth. The surface albedo calculated for a given location in

rom 0.8 to 0.25 according to whether the local vegetation is farmland or forest.

Other vegetation-dependent parameters are root depth, which determines the depth to which soil moisture is

erodynamic roughness, which represents the frictional effect of the surface on boundary layer ¯ow; canopy wa

he maximum quantity of water that can be held on the canopy; the leaf area index, which is the ratio of leaf a

eight; fractional vegetation cover; and a surface water in®ltration enhancement factor, which represents the ef

orosity through the action of plant roots and soil organisms. In the standard HadAM3 con®guration, the lan

peci®ed using the ACT land cover dataset. The surface ¯uxes of heat and moisture are simulated with the M

Cox et al., 1999). This uses the Penman-Monteith equation for evapotranspiration with interactive stomatal r

nd a four-layer Clapp-Hornberger soil hydrology module with soil moisture phase change included.

Three climate simulations were performed, all with the present-day atmospheric CO2 concentration but ea

urface parameter ®elds. In the ®rst simulation all vegetation parameters were derived from the NAT dataset, wh

ll parameters were derived from ACT. The difference between these two simulations therefore shows the effect

odel climate via the changes in the physical properties of the land surface (Figure 2). In the third simulation,

ere derived from NAT while the rest were derived from ACT; comparison of this simulation (ALBNAT) with t

limatic impact of the albedo change from that of the other surface properties.

To allow diagnosis of the radiative forcing by the albedo change, the simulation with ACT land cover also in

adiation calculations using the NAT albedo parameters. These calculations were performed on all radiation tim

erformed with the ACT parameters, using the same input variables but without passing the results to the rest o

simulation of the surface albedo and shortwave radiation ¯uxes with natural land cover but with prese

ydrological conditions. By comparing these ¯uxes with those simulated with the ACT parameters, the dire

hange could be distinguished from the indirect effects such as changes in snow and cloud cover; this therefor

orcing from the feedback. The difference in the outgoing shortwave radiation ¯ux at the tropopause provided

orcing due to the albedo change.



The simulations were run for twenty years, each having undergone a ®ve-year , and presented here are twenty-
year means. Simulations of this length were necessary to minimise the impact of i ility l climate; it was found that
a few anomalous years could dominate the results if only ten years of simulation . Sea peratures and sea ice cover
were prescribed to present-day climatologies in all three simulations.

4. RESULTS

The largest and most extensive temperature changes occurred in the temperate regio orthern winter and spring
(Figure 3). In central North America, the Eurasian agricultural belt and China, t at 1.5 e surface were 1±2 K lower
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with ACT than with NAT in December, January and February (DJF), and March, April an mulated surface albedo was

higher by 0.1 or more with ACT in these seasons, as a result of lying snow remaining e ted areas. A similar albedo

increase and temperature reduction was seen when comparing the ACT climate with AL h suggests that this surface

albedo difference was the main driver of the temperature change in these regions du year. Although the albedo

difference was greatest in DJF, the impact on the net surface shortwave radiation ¯ux an was greater in MAM when

the solar zenith angle is smaller. In the annual mean, temperature changes of ÿ0.5 K to ese areas (Figure 5a). This

GCM result is consistent with that obtained by Brovkin et al. (1999) using an Earth-sys ediate Complexity (EMIC).
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Lower temperatures were also seen with ACT relative to NAT across central and western Eu Figure 3), despite a lack of

snow cover and hence minimal albedo change in this season. These temperature differences with increased cloud cover

reducing the mean downward shortwave radiation ¯ux, and were not seen when comparing t with ALBNAT (Figure 4).

In the Sahel, dry-season (DJF) temperatures were higher with ACT than with NAT (Figure 3 f latent heat away from the

surface being reduced. The contemporary agricultural vegetation had less access to the soi than the natural savanna

Figure 3. Twenty-year mean seasonal temperature differences between climates simulated with ACT an ces discussed in the text were

statistically signi®cant at the 95% con®dence level or better, according to a Student's t-test o f means from each individual

year with autocorrelation considered.
rope in MAM (

were associated

he ACT climate

), with the ¯ux o

l moisture store

d NAT. Differen

n the timeseries o



vegetation due to shallower mean rooting depths, so allowed less transpiration durin rly, the start of the Indian
monsoon season (MAM) was warmer with ACT than with NAT, again with the laten r with actual vegetation. In

ALBNAT, the 1.5 m temperature in both the Sahel and India was similar to that simu ng a negligible effect of the
surface albedo change in those regions.

North-east Australia was warmer with ACT than with NAT in DJF, with reduced cl ay decrease in precipitation
causing an increase in the downward shortwave radiation ¯ux and a reduction in the u lthough only a small area of
land cover was different in the two simulations, the warm anomaly covered a much w ted precipitation reduction
extended well over the Paci®c Ocean, suggesting that the changes were due to a large he atmospheric circulation.

Figure 4. Twenty-year mean seasonal temperature differences betwe AT.
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Mean sea-level pressure over this region was approximately 0.5 hPa hig ase in ascent. Local climate

changes were also seen in regions where land cover did not change at s in June, July and August

(JJA) were 0.5 K to 1.0 K lower with ACT than with NAT, and over th eratures were different with

ACT and NAT throughout much of the year. So, as well as in¯uencing scale land cover changes in

the model in¯uenced the global circulation and hence affected the ener local vegetation change was

not imposed (Chase et al., 2000).

The mean 1.5 m temperature over all land points was 0.06 K lower cance level of 97%, but the

global land mean 1.5 m temperature in ALBNAT was not signi®cantly he results from this model

therefore suggest that the surface albedo increase in temperate agricultu sent-day land use on global

land temperature, with the areas warmed by reduced evaporation maki global scale. Consequently,

diagnosis of the radiative forcing should provide a useful means of co se with other in¯uences on

climate. The local annual mean shortwave radiative forcing exceeded ÿ rica and the cooler regions

of Asia (Figure 5b), which is considerably greater than the forcings rel reenhouse gases (2 W/m2)
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and the direct effect of sulphate aerosols (ÿ1.5 W/m2) over these areas (H ). n forcing by surface albedo
change was ÿ0.20 W/m2, which is smaller than the global forcing by green m et al., 1995; Schimel et al.,
1996); whereas the greenhouse forcing is relatively uniformly distributed he s simulated here were very
localized. Nevertheless, the global surface albedo forcing is of a similar m cin in sulphate aerosols (direct
effect), stratospheric and tropospheric ozone, halocarbons, and N2O ove rio al., 1996). In comparison,
Hansen et al. (1997) estimated the land-use forcing to be ÿ0.40 W/m2.

5. CONCLUS

These results suggest that the main biogeophysical impact of land cover ch oli temperate latitudes, acting
through an increase in winter and spring surface albedo. In these season rat in the Eurasian and North
American agricultural regions is up to 2 K lower with actual rather get annual mean cooling is

Figure 5. (a) Twenty-year annual mean temperature differences between ACT and ea ative forcing due to difference

in ACT and NAT albedo parameters, diagnosed in ACT climate.
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